Generalized averaged Gauss quadrature rules for the approximation of matrix functionals
نویسندگان
چکیده
The need to compute expressions of the form uf(A)v, where A is a large square matrix, u and v are vectors, and f is a function, arises in many applications, including network analysis, quantum chromodynamics, and the solution of linear discrete ill-posed problems. Commonly used approaches first reduce A to a small matrix by a few steps of the Hermitian or non-Hermitian Lanczos processes and then evaluate the reduced problem. This paper describes a new method to determine error estimates for computed quantities and shows how to achieve higher accuracy than available methods for essentially the same computational effort. Our methods are based on recently proposed generalized averaged Gauss quadrature formulas.
منابع مشابه
The structure of matrices in rational Gauss quadrature
This paper is concerned with the approximation of matrix functionals defined by a large, sparse or structured, symmetric definite matrix. These functionals are Stieltjes integrals with a measure supported on a compact real interval. Rational Gauss quadrature rules that are designed to exactly integrate Laurent polynomials with a fixed pole in the vicinity of the support of the measure may yield...
متن کاملGeneralized anti-Gauss quadrature rules
Abstract. Gauss quadrature is a popular approach to approximate the value of a desired integral determined by a measure with support on the real axis. Laurie proposed an (n+1)-point quadrature rule that gives an error of the same magnitude and of opposite sign as the associated n-point Gauss quadrature rule for all polynomials of degree up to 2n + 1. This rule is referred to as an anti-Gauss ru...
متن کاملMatrices, Moments, and Rational Quadrature
Abstract. Many problems in science and engineering require the evaluation of functionals of the form Fu(A) = uT f(A)u, where A is a large symmetric matrix, u a vector, and f a nonlinear function. A popular and fairly inexpensive approach to determining upper and lower bounds for such functionals is based on first carrying out a few steps of the Lanczos procedure applied to A with initial vector...
متن کاملTruncated generalized averaged Gauss quadrature rules
Generalized averaged Gaussian quadrature formulas may yield higher accuracy than Gauss quadrature formulas that use the same moment information. This makes them attractive to use when moments or modified moments are cumbersome to evaluate. However, generalized averaged Gaussian quadrature formulas may have nodes outside the convex hull of the support of the measure defining the associated Gauss...
متن کاملGeneralized averaged Szegő quadrature rules
Szegő quadrature rules are commonly applied to integrate periodic functions on the unit circle in the complex plane. However, often it is difficult to determine the quadrature error. Recently, Spalević introduced generalized averaged Gauss quadrature rules for estimating the quadrature error obtained when applying Gauss quadrature over an interval on the real axis. We describe analogous quadrat...
متن کامل